Alexander Wang sac pas cher

Switch language

Intet replika Rolex ur er komplet uden high-end autentiske Rolex tilfælde til at holde dem sikre. Holdbar og luksuriøs,luksus replika ure danmark disse er perfekte til en fornuftig opbevaringsløsning eller en autentisk præsentation.

Real-time tracking of a single cell in a lab-on-a-chip


There is huge interest in biology for microdevices that can analyse very small biological samples by combining microfluidic technology with electrical and/or mechanical functions (lab-on-a-chip). This can even be downsized at the single-cell level, like in a cell sorter at the output of which single cell analysis is to be performed in parallel in several tens of different bioreactors. However, one of the main challenges is to handle about 100 cells per second. This requires being able to monitor and control in real time the high-speed displacements of the cells during their journey in the chip. Performing such task with classical vision-based sensors is tremendously harsh, due to the high number of cells that must be handled at the same time.

A real-time position sensor, directly integrated within this kind of device, has been developed by EIPHI in collaboration with EPFL Lausanne (International Collegium SMYLE between FEMTO-ST and EPFL) and Ecole Centrale at Lyon, and published in Lab-On-A-Chip. It is based on impedance measurement, whose magnitude varies when the position of a cell trapped between purposely-designed electrodes evolves. Helped by a further signal processing, fast sampling, sensitive and repeatable real-time measurement of the cell position is performed, as conceptually proved with 8.7-µm-diameter polystyrene beads.

B. Brazey et al., “Impedance-based real-time position sensor for lab-on-a-chip devices”, Lab-On-A-Chip 18, 5, 818-831 (Mar. 7 2018). DOI: 10.1039/c7lc01344b

fake Alexander Wang taschen
Alexander Wang bolsos españa